Solution for 4G/LTE and 5G/NR

The Effnet ROHC product portfolio consists of software products based on RObust Header Compression (ROHC) RFCs. ROHC is a header compression algorithm and protocol standardized by IETF. The Effnet ROHC product portfolio provides significant improvements in link efficiency for TCP traffic e.g. web, file transfers etc., RTP and UDP traffic e.g. real time, interactive and streaming applications and ESP traffic e.g. secure traffic over high BER, long RTT links.

ROHC is recommended by 3GPP for efficient use of radio resources since Release 4 onwards. It is an important component of the IP Multimedia Subsystem (IMS). ROHC is also used to improve efficiency in many other data networks such as satellite, WAN and ad-hoc (military applications) etc.

ROHC for LTE

3GPP’s Long Term Evolution (LTE) project focuses on enhancing the Universal Terrestrial Radio Access (UTRA) and optimizing radio access architecture and the 5G New Radio (NR) project aims to further improve the radio access technology to enable three new use cases; enhanced mobile broadband (eMBB), ultra-reliable low latency communications (URLLC) and massive machine-type communications (mMTC). LTE and NR has adopted packet-switch technology using end-to-end IP communication instead of traditional circuit-switching. The LTE and NR specifications for Packet Data Convergence Protocol (TS 36.323 and TS 38.323) specifies use of ROHC, and from TS 38.323 Release 16 onwards, EHC is specified for use. It supports the following ROHC framework and profiles as well as Ethernet Header Compression implemented in the form of various Effnet products:

Product Usage References
Effnet ROHC™ Uncompressed, RTP/UDP/IP, UDP/IP, ESP/IP, IP RFC 3095, RFC 3843, RFC 4815
Effnet ROHC-TCP™ TCP/IP RFC 6846, RFC 5795
Effnet ROHCv2™ Uncompressed, RTP/UDP/IP, UDP/IP, ESP/IP, IP RFC 5225, RFC 5795
Effnet EHC™ Ethernet 3GPP TS 38.323 Release 16+

The Effnet ROHC product portfolio can be optionally complemented with a test environment, Effnet HC-Sim™, which can simulate IP traffic with configurable link conditions, e.g. bit errors, packet loss, reordering etc.

Effnet Classifier and context manager

EffRCCM

Packet classification and context management is essential to header compression. Effnet provides this additional module together with the Effnet ROHC product family.

Effnet ROHC™

The VoIP enabler on wireless networks! Effnet ROHC™ is an important component to efficiently run VoIP services over wireless networks. Most of the RTP applications use UDP for signaling purposes and there are also many stand-alone UDP applications, so the support for IP/UDP compression adds further to the efficiency. There is significant demand for secure exchange of information which leads to increased header overhead. The capability to compress IP/ESP, the header overhead in secure connections, makes it possible to run secure networks without additional bandwidth. As more and more networks are moving to support IP based communications, the number of nodes that require an IP address are increasing rapidly. The introduction of IPv6 should address this concern but at least during transition time, a lot of traffic will be sent via tunnels across networks. The support for compressing layers of IP headers makes it possible to run tunneled traffic without need for additional bandwidth.

Effnet ROHC-TCP™

Multiple Internet packet size studies* are in agreement that at least 40% of all IPv4 packets carry no or only a few bytes of payload i.e. packet sizes are at or very near to header size (IPv4+TCP). One study of IPv6 packets shows the same trend. Even more remarkable in that study is that for IPv6, 60-80% of the packets carry more header data than packet data. Effnet ROHC-TCP™ would be very beneficial in these cases.

Effnet ROHCv2™

Mobility is the cornerstone of the cellular networks but supporting it efficiently is a tricky business. As the cellular network architectures have evolved, the integration point of ROHC in system nodes has moved closer towards mobile terminals for various reasons but has lead to a problem of handling reordering of packets during mobility. Effnet ROHCv2™ addresses this concern very efficiently while providing high compression efficiency and robustness.

Effnet EHC™

In industrial applications where Ethernet communication over 3GPP wireless protocols is used, the 3GPP defined EHC compression protocol is ideal to use, both together with ROHC (when there is IP on top of Ethernet) and standalone (when there are other industrial protocols on top of Ethernet). Combining EHC and ROHC will achieve the highest possible compression efficiency, leading to reducing transmission overhead and time, especially in wireless networks with high error probabilities and scarce resources. With IoT applications in particular, it is important to have minimal and efficient code which makes Effnet EHC™ an ideal solution for Ethernet Header Compression.

 

*Packet size studies at www.caida.org